Coupling a Neural Network-Based forward Model and a Bayesian Inversion Approach to Retrieve Wind Field from Spaceborne Polarimetric Radiometers
نویسندگان
چکیده
A simulation study to assess the potentiality of sea surface wind vector estimation based on the approximation of the forward model through Neural Networks and on the Bayesian theory of parameter estimation is presented. A polarimetric microwave radiometer has been considered and its observations have been simulated by means of the two scale model. To perform the simulations, the atmospheric and surface parameters have been derived from ECMWF analysis fields. To retrieve wind speed, Minimum Variance (MV) and Maximum Posterior Probability (MAP) criteria have been used while, for wind direction, a Maximum Likelihood (ML) criterion has been exploited. To minimize the cost function of MAP and ML, conventional Gradient Descent method, as well as Simulated Annealing optimization technique, have been employed. Results have shown that the standard deviation of the wind speed retrieval error is approximately 1.1 m/s for the best estimator. As for the wind direction, the standard deviation of the estimation error is less than 13° for wind speeds larger than 6 m/s. For lower wind velocities, the wind direction signal is too weak to ensure reliable retrievals. A method to deal with the non-uniqueness of the wind direction solution has been also developed. A test on a case study has yielded encouraging results.
منابع مشابه
Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملForward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)
This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...
متن کاملA calibration method for fully polarimetric microwave radiometers
A technique for absolute end-to-end calibration of a fully polarimetric microwave radiometer is presented. The technique is based on the tripolarimetric calibration technique of Gasiewski and Kunkee, but is extended to provide a means of calibrating all four Stokes parameters. The extension is facilitated using a biaxial phase-retarding microwave plate to provide a precisely known fourth Stokes...
متن کاملA Neural Network to Retrieve Upper Level Winds from Ground Based Profilers
Accurate, real-time upper level wind measurements can provide essential input into operational mesoscale models for their initialization and verification. In artillery meteorology, measurements of upper level winds are important to the accuracy of calculated ballistic trajectories. Although there are a number of ground based wind profilers available (wind tracer lidar, Doppler radar, and acoust...
متن کامل